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Mobile Malware Detection
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®ML-based Mobile App Review Techniques

® Fingerprint-based Antivirus Checking

® Static Code Inspection

® Dynamic Behavior Analysis




ML-based Detection at Market Scales

Widely explored in Real-world No existing report of
the past decade the effectiveness
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Large-scale Dataset: APl-centric, Dynamic
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API Selection: Correlation

®APIs’ correlations with the
malice of apps

"  Using SRC (Spearman’s rank i
correlation coefficient) to evaluate !
APIs’ correlation with apps’ malice E

® 260 APIs pose non-trivial i
correlation (| SRC|>0.2) E
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API Selection: Correlation

®APIs’ correlations with the ®Time consumption of
malice of apps tracking different API sets

"  Using SRC (Spearman’s rank i
correlation coefficient) to evaluate !
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APIs’ correlation with apps’ malice !
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"  Fitting a tri-modal distribution
" |ndicating a complex relationship

a - n+ by, n € [1,800);
" 260 APIs pose non-trivial t=1{ ay-n, n € [800, 1K];
correlation (| SRC|> 0.2) as - log(n) + b3,  n>1K.
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APl Selection: Model & Accuracy

®Machine Learning Model & Detection Accuracy

Model Precision | Recall Training
Time

Naive Bayes 60.4% 59.6% 3.6 min
LR 81.2% 70.3% 10.4 min
SVM 87.9% 71.6% | ~27K min

GBDT 88.4% 74.3% 364 min
kNN 86.5% 83.7% | ~1.8Kmin
CART 87.6% 84.3% 11.6 min
ANN 90.8% 89.9% | ~1.2K min
DNN 91.5% 90.9% | ~1.9K min
Random Forest 91.6% 90.2% 29.1 min




APl Selection: Model & Accuracy

®Machine Learning Model & Detection Accuracy

Model Precision | Recall Training |
Time i Tracking top-490 correlated
Naive Bayes 60.4% | 59.6% | 3.6 min | APIs achieves the highest
LR 81.2% | 703% | 10.4min | 1 precision/recall
SVM 87.9% | 71.6% | ~27K min
GBDT 88.4% | 74.3% | 364 min 95
kNN 86.5% | 83.7% | ~1.8K min %90'
CART 87.6% | 84.3% | 11.6min %Zz
ANN 90.8% | 89.9% | ~L2Kmin | 27
DNN 91.5% | 90.9% | ~1.9Kmin | =70 o]
Random Forest | 91.6% | 90.2% | 29.1 min 0 200 400 600 800 1K 10K 50K
Number of Tracked API




Key API| Selection Strategy

@ Step 1. Selecting APIs with the highest correlation with malware (Set-C).
® Step 2. Selecting APIs that relate to restrictive permissions (Set-P).
® Step 3. Selecting APIs that perform sensitive operations (Set-S).

@® Step 4. Combining the above.



Key AP| Selection Strategy

@ Step 1. Selecting APIs with the highest correlation with malware (Set-C).
® Step 2. Selecting APIs that relate to restrictive permissions (Set-P).
® Step 3. Selecting APIs that perform sensitive operations (Set-S).

@® Step 4. Combining the above.

! Performance:

' ® Analysis time: 4.3 minutes

' ®Precision/Recall: 96.8% / 93.7%
| ®Training time: 14.4 seconds
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Further Enriching the Feature Space

®Hidden features — APl invocation hidden by certain techniques

leveraging other apps/services to |

perform sensitive actions |

/

| Hidden and internal APIs
|

| like Java reflection

(

I | IPC through intents I
triggered by special techniques | |
' \

[ Checking Permissions ] [ Checking Used Intents ]




Further Enriching the Feature Space

®Hidden features — APl invocation hidden by certain techniques

leveraging other apps/services to |

|
triggered by special techniques |
| perform sensitive actions |

/

| Hidden and internal APIs
|

| like Java reflection

/
| IPC through intents I
|
|

-—e e e o Ee e o Em Em = w’ S e — w’
[ Checking Permissions ] [ Checking Used Intents ]
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I Key APIs alone : APl + Permission + Intents !

|

| ' =5 :
| ® Precision: 96.8% : ,JJ : ® Precision: 98.6% :
| ®Recall: 93.7% | | @ Recall: 96.7%
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System: Emulation Optimization

I
| ®@Default Google Android Emulator: full-system emulation
I

| ®Result: 30% of apps require 25-minute analysis time
' ®Solution: lightweight emulation on powerful x86 server
' ®Architect: native x86 Android + Dynamic Binary Translation

| $® Generate Ul Events Monkey Exerciser

| @Pynamic Binary ' 4P/ Invocations; |
I(D Translation x86 @ APP ® |’: . ::
APP ! > Binary —» Metadata | | \ Permissions; —
| | : Used Intents :
1
| |

{ @ Invoke APIs > K ® Invoke APIs
i .
Emulation

| Infrastructure Xposed Hooking Tool

Tracked Features Random Forest



System: Emulation Optimization

: ® Configuration: 5x4-core x86 server with CPU pinning
I

| ® Compatibility: £1% incompatible apps
' ®Roll back to the Google Emulator for incompatible apps

' ®Performance: saving around 70% of the detection time
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System: Real-world Deployment

®Integration to Tencent Market

I Running since March 2018

: Checking ~10K apps per day using a
I single commodity server

: " QOver 98%/96% online precision/recall :
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System: Real-world Deployment

®Integration to Tencent Market ®System Evolution

" Monthly updating the key APls 1
with the original dataset and :
newly submitted apps I

"  Fluctuating between 425 and 432 :

Running since March 2018
Checking ~10K apps per day using a
single commodity server
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System: Addressing FPs & FNs

®False Positives

1™ 2% FP apps as complained by I
: developers :
| ® All using a few top-ranking APls |
: ®  Most are quickly vetted based :
I on previous versions |

Manual Inspection:
acceptable workload

Active & complete

avoidance of FPs




System: Addressing FPs & FNs

®False Positives ®False Negatives

1™ 2% FP apps as complained by | 1'® 4% FN apps reported by end users :
: developers : : Hard to avoid :
1 ™ All using a few top-ranking APls 1™ Most (87%) barely use key APIs :
: " Most are quickly vetted based : : They have fairly simple I
I | | I

on previous versions functionalities, posing little threat

4 4

Manual Inspection: Report-driven:
acceptable workload mild impact on users

Active & complete
avoidance of FPs

Passive mitigation of FNs




Revealed Important Features

® Attempting to acquire privacy-sensitive information of user devices
®Tracking or intercepting system-level events

®Enabling certain types of attacks such as overlay-based attacks

Gini Importance
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API: SmsManager_sendTextMessage
Permission: SEND_SMS

Intent: SMS_RECEIVED

Intent: wifi. STATE_CHANGE

Permission: RECEIVE_SMS

Intent: DEVICE_ADMIN_ENABLED
Intent: buluetooth.STATE_CHANGED
Permission: RECEIVE_MMS

Intent: ACTION_BATTERY_OKAY

API: TelephonyManager_getLinelNumber
Permission: RECEIVE_WAP_PUSH

API: Wifilnfo_getMacAddress

Permission: READ_SMS

API: View_setBackgroundColor
Permission: ACCESS_NETWORK_STATE
Permission: SYSTEM_ALERT_WINDOW
API: SQLiteDatabase_insertWithOnConflict
Permission: RECEIVE_BOOT_COMPLETED
API: HttpURLConnection_connect

API: ActivityManager_getRunningTasks
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Experiences of APICHECKER

Feature Selection

Principled,
data-driven

Feature Engineering

\
Malicious “‘
Analysis Speed Model Evolution
i Efficient app o K/I_C)F\t_hl_y_ ) 1:
1 emulation on update with 1
, powerful x86 novel apps & i
' servers SDK APIs |

Actlve & complete avoidance of FPs
vs. Passive mitigation of FNs



Conclusion & Dataset

® We conduct a large-scale study to understand and
overcome real-world challenges of developing ML-
based malware detection solutions at market scales.

® \We showcase several key design decisions we make
towards implementing, deploying, and operating a
production market-scale mobile malware detection
system — APICHECKER.

® Our system has been operational at Tencent Market
since March 2018, vetting around 10K apps per day
on a single commodity server.

Dataset & tool release: https://apichecker.github.io/



https://apichecker.github.io/

Countering Emulator Detection

B changing the default configurations of emulators
B tuning the execution parameters of Monkey
B replaying traces of sensor data collected from real devices
B obfuscating the existence of Xposed
®Experiment on real devices, original and enhanced emulator:

B original emulator: 86.6% apps invoke the same amount of APIs



Comparison with Other Work

B the scale of studied apps is much larger

B innovations in APl selection, identifying hidden features
B optimization in dynamic emulation infrastructure
B commercial deployment result & online model evolution

APSI tf::ig;on Related Work Analysis Method An:?;‘sji:;me #I?s z;s : tl?giléfl Precision, Recall
Statistical Sharma et al. [35] static -- 35 1,600 91.2%, 97.5%
Correlations | Droid APIMiner [1] static 25 sec 169 ~20K --
Restrictive Stowaway [135] static - - 1,259 064 --
Permissions DroidMat [43] static -- -- 1,738 96.7%, 87.4%
Yang et al. [46] dynamic 1080 sec 19 ~27K 92.8%, 84.9%
RiskRanker [20] static 41 sec - - ~118K - -
Sensitive DroidCat [9] semi-dynamic 354 sec 27 ~34K 97.5%, 97.3%
Operations IntelliDroid [42] static + dynamic 138.4 sec 228 2,326 - -
Droid-Sec [49] static + dynamic -- 64 250 --
DroidDolphin [44] dynamic 1020 sec 25 64K 90%, 82%
Hybrid DREBIN |[6] static 10 sec -- ~128K --
APICHECKER dynamic 78 sec 426 ~500K | 98.6%, 96.7 %




Ul Exploration & Coverage

|
|
| actually referred in source code

| ®Tradeoff: 5K vs. 100K Monkey Events, sacrificing a small fraction
I
1 (9.5%) of RAC to largely reduce (94%) of the emulation time

100 - . , : 10 —

I
|
I
|
| ®@New metric: Referred Activity Coverage (RAC) :
I
I
|

— -Emulation Time]|
—RAC
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: : : : 0
0 3 6 9 12 15
Number of Monkey Events (K)



A Smaller APl set?

I

| ®API selection can affect both the detection accuracy and speed
I

! ® Most of key APlIs slightly affect accuracy, greatly impacts speed
' @Tracking top-150 vs. Tracking top-426:

B Precision/Recall: 98.3%/96.6% vs. 98.6%/96.7%
B Analysis Time: 2.5 m vs. 4.3 m (without efficient emulation)
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Integration to Other Markets

| ®Expected to be a easy process

' ®mplementation: mature analysis tool chain + machine learning
' ®Training: APKs + ground-truth data

' ®@Possible for large markets to distribute pre-trained models



Robustness of APICHECKER

l ®QOur key APl set: 426 APIs, 0.85% of the 50K APIs in SDK

: ®4,816 APIs depend on the key APIs, a total of 5,242 (10.5%) APIs
' ®Reimplementing all the APIs: high technical bar

' ®Possible workaround — NDK: high usage is also an indicator



Online Evaluation & Evolution

B based on other components in T-Market’s app review process
B >4 SOTA fingerprint-based antivirus checking (all claim <5% FP)
B expert-informed APl inspection
B user-report-driven manual examination

®Evolution:
B dataset: original dataset & newly submitted apps

B [abels: flagged by both APICHECKER and manual inspection



