
Experiences of Landing Machine Learning onto
Market-Scale Mobile Malware Detection

Liangyi Gong, Zhenhua Li, Feng Qian, Zifan Zhang,

Qi Alfred Chen, Zhiyun Qian, Hao Lin, Yunhao Liu

Mobile Malware Detection
⚫Android App Markets

Mobile App Markets

⚫Current Mobile App Review

Mobile Users

“lend credibility”

✓ Fingerprint-based Antivirus Checking

✓ Expert-informed API inspection

✓ User-report-driven Manual Examination

✓ API-based Dynamic Analysis

Mobile Malware Detection
⚫Android App Markets

Mobile App Markets

⚫ML-based Mobile App Review Techniques

⚫ Fingerprint-based Antivirus Checking

⚫ Static Code Inspection

Mobile Users

⚫ Dynamic Behavior Analysis

“lend credibility”

ML-based Detection at Market Scales

Real-world
Challenges?

Widely explored in
the past decade

No existing report of
the effectiveness

ML-based Malware
Detection

ML-based Solutions
at Market Scales

Large-scale Dataset: API-centric, Dynamic

• 500K apps submitted to Tencent Market
• From March to December 2017
• Containing apps’ malice labels

App Emulation

APK APK

Tencent Market
https://sj.qq.com/

Trigger api to
output log

Monkey: UI
Event Steam

Trigger API to
output log

Commodity servers

One-hot Feature Vector

API Selection: Correlation
⚫Time consumption of

Tracking APIs

▪ Tracking highly correlated APIs
▪ Fitting a tri-modal distribution

⚫APIs’ correlations with the
malice of apps

▪ Using SRC (Spearman’s rank

correlation coefficient) to evaluate
APIs’ correlation with apps’ malice

▪ 260 APIs pose non-trivial
correlation (|SRC|≥ 0.2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000

|S
R

C
|

Ranking of API

API Selection: Correlation
⚫Time consumption of

tracking different API sets

▪ Fitting a tri-modal distribution
▪ Indicating a complex relationship

⚫APIs’ correlations with the
malice of apps

▪ Using SRC (Spearman’s rank

correlation coefficient) to evaluate
APIs’ correlation with apps’ malice

▪ 260 APIs pose non-trivial
correlation (|SRC|≥ 0.2)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 200 400 600 800 1000

|S
R

C
|

Ranking of API

API Selection: Model & Accuracy
⚫Machine Learning Model & Detection Accuracy

Tracking top-490 correlated
APIs achieves the highest

precision/recall

Model Precision Recall Training
Time

Naive Bayes 60.4% 59.6% 3.6 min

LR 81.2% 70.3% 10.4 min

SVM 87.9% 71.6% ∼27K min

GBDT 88.4% 74.3% 364 min

kNN 86.5% 83.7% ∼1.8K min

CART 87.6% 84.3% 11.6 min

ANN 90.8% 89.9% ∼1.2K min

DNN 91.5% 90.9% ∼1.9K min

Random Forest 91.6% 90.2% 29.1 min

API Selection: Model & Accuracy
⚫Machine Learning Model & Detection Accuracy

Model Precision Recall Training
Time

Naive Bayes 60.4% 59.6% 3.6 min

LR 81.2% 70.3% 10.4 min

SVM 87.9% 71.6% ∼27K min

GBDT 88.4% 74.3% 364 min

kNN 86.5% 83.7% ∼1.8K min

CART 87.6% 84.3% 11.6 min

ANN 90.8% 89.9% ∼1.2K min

DNN 91.5% 90.9% ∼1.9K min

Random Forest 91.6% 90.2% 29.1 min

Tracking top-490 correlated
APIs achieves the highest

precision/recall

Key API Selection Strategy

⚫Step 1. Selecting APIs with the highest correlation with malware (Set-C).

⚫Step 2. Selecting APIs that relate to restrictive permissions (Set-P).

⚫Step 3. Selecting APIs that perform sensitive operations (Set-S).

⚫Step 4. Combining the above.

Performance:

⚫Analysis time: 4.3 minutes

⚫Precision/Recall: 96.8% / 93.7%

⚫Training time: 14.4 seconds

Set-P
100

Set-S
66

Set-C
244

412

Key API Selection Strategy

⚫Step 1. Selecting APIs with the highest correlation with malware (Set-C).

⚫Step 2. Selecting APIs that relate to restrictive permissions (Set-P).

⚫Step 3. Selecting APIs that perform sensitive operations (Set-S).

⚫Step 4. Combining the above.

Performance:

⚫Analysis time: 4.3 minutes

⚫Precision/Recall: 96.8% / 93.7%

⚫Training time: 14.4 seconds

Set-P
100

Set-S
66

Set-C
244

412

Further Enriching the Feature Space

Checking Permissions

Hidden and internal APIs
triggered by special techniques

like Java reflection

Checking Used Intents

IPC through intents
leveraging other apps/services to

perform sensitive actions

⚫Hidden features – API invocation hidden by certain techniques

Key APIs alone

⚫Precision: 96.8%

⚫Recall: 93.7%

API + Permission + Intents

⚫Precision: 98.6%

⚫Recall: 96.7%

Further Enriching the Feature Space

Checking Permissions

Hidden and internal APIs
triggered by special techniques

like Java reflection

Checking Used Intents

IPC through intents
leveraging other apps/services to

perform sensitive actions

⚫Hidden features – API invocation hidden by certain techniques

Key APIs alone

⚫Precision: 96.8%

⚫Recall: 93.7%

API + Permission + Intents

⚫Precision: 98.6%

⚫Recall: 96.7%

System: Emulation Optimization

⚫Default Google Android Emulator: full-system emulation

⚫Result: 30% of apps require ≥5-minute analysis time

⚫Solution: lightweight emulation on powerful x86 server

⚫Architect: native x86 Android + Dynamic Binary Translation

System: Emulation Optimization

⚫Configuration: 5x4-core x86 server with CPU pinning

⚫Compatibility: ≤1% incompatible apps

⚫Roll back to the Google Emulator for incompatible apps

⚫Performance: saving around 70% of the detection time

Able to analyze an app

in around 1.3 minutes

System: Real-world Deployment

⚫System Evoluation

⚫Monthly updating the key APIs
with apps and SDK APIs

⚫Dataset contains the original
dataset and new apps submitted

⚫Fluctuating between 425 and 432

⚫Integration to Tencent Market⚫Integration to Tencent Market

▪ Running since March 2018
▪ Checking ~10K apps per day using a

single commodity server
▪ Over 98%/96% online precision/recall

System: Real-world Deployment

⚫System Evolution

▪ Monthly updating the key APIs
with the original dataset and
newly submitted apps

▪ Fluctuating between 425 and 432

⚫Integration to Tencent Market

▪ Running since March 2018
▪ Checking ~10K apps per day using a

single commodity server
▪ Over 98%/96% online precision/recall

System: Addressing FPs & FNs

⚫False Negative

⚫4% False Negative (FN) apps
reported by end users

⚫Most (87%) of the FN apps barely
use the 426 key APIs

⚫These apps have fairly simple
functionalities without posing a
great security threat to end users

⚫a small number of false negative
apps in fact has little effect on the
regular operation of T-Market

Passive mitigation of FNs

⚫False Positives

▪ 2% FP apps as complained by
developers

▪ All using a few top-ranking APIs
▪ Most are quickly vetted based

on previous versions

Active & complete
avoidance of FPs

Manual Inspection:
acceptable workload

System: Addressing FPs & FNs

⚫False Negatives⚫False Positives

▪ 4% FN apps reported by end users
▪ Hard to avoid
▪ Most (87%) barely use key APIs
▪ They have fairly simple

functionalities, posing little threat

▪ 2% FP apps as complained by
developers

▪ All using a few top-ranking APIs
▪ Most are quickly vetted based

on previous versions

Passive mitigation of FNs
Active & complete
avoidance of FPs

Manual Inspection:
acceptable workload

Report-driven:
mild impact on users

Revealed Important Features
⚫Attempting to acquire privacy-sensitive information of user devices

⚫Tracking or intercepting system-level events

0 0.02 0.04 0.06 0.08 0.1

API: SmsManager_sendTextMessage

Permission: SEND_SMS

Intent: SMS_RECEIVED

Intent: wifi.STATE_CHANGE

Permission: RECEIVE_SMS

Intent: DEVICE_ADMIN_ENABLED

Intent: buluetooth.STATE_CHANGED

Permission: RECEIVE_MMS

Intent: ACTION_BATTERY_OKAY

API: TelephonyManager_getLine1Number

Permission: RECEIVE_WAP_PUSH

API: WifiInfo_getMacAddress

Permission: READ_SMS

API: View_setBackgroundColor

Permission: ACCESS_NETWORK_STATE

Permission: SYSTEM_ALERT_WINDOW

API: SQLiteDatabase_insertWithOnConflict

Permission: RECEIVE_BOOT_COMPLETED

API: HttpURLConnection_connect

API: ActivityManager_getRunningTasks

Gini Importance

⚫Enabling certain types of attacks such as overlay-based attacks

Experiences of APICHECKER

Feature Selection Feature Engineering

Model EvolutionAnalysis Speed

Developer Engagement

Benign Malicious

Principled,
data-driven

Efficient app
emulation on
powerful x86

servers

Adversary’s
perspective

Monthly
update with
novel apps &

SDK APIs

Active & complete avoidance of FPs
vs. Passive mitigation of FNs

Dataset & tool release: https://apichecker.github.io/

Conclusion & Dataset
⚫ We conduct a large-scale study to understand and

overcome real-world challenges of developing ML-
based malware detection solutions at market scales.

⚫ Our system has been operational at Tencent Market
since March 2018, vetting around 10K apps per day
on a single commodity server.

⚫ We showcase several key design decisions we make
towards implementing, deploying, and operating a
production market-scale mobile malware detection
system – APICHECKER.

https://apichecker.github.io/

Countering Emulator Detection

⚫Strategies:

◼ changing the default configurations of emulators

◼ tuning the execution parameters of Monkey

◼ replaying traces of sensor data collected from real devices

◼ obfuscating the existence of Xposed

⚫Experiment on real devices, original and enhanced emulator:

◼ original emulator: 86.6% apps invoke the same amount of APIs

◼ enhanced emulator: 98.6% apps invoke the same amount of APIs

Comparison with Other Work
⚫Differences:

◼ the scale of studied apps is much larger

◼ innovations in API selection, identifying hidden features

◼ optimization in dynamic emulation infrastructure

◼ commercial deployment result & online model evolution

UI Exploration & Coverage

⚫Activity Coverage: pessimistic, only 88% of defined activities are

actually referred in source code

⚫New metric: Referred Activity Coverage (RAC)

⚫Tradeoff: 5K vs. 100K Monkey Events, sacrificing a small fraction

(9.5%) of RAC to largely reduce (94%) of the emulation time

A Smaller API set?

⚫API selection can affect both the detection accuracy and speed

⚫Most of key APIs slightly affect accuracy, greatly impacts speed

⚫Tracking top-150 vs. Tracking top-426:

◼ Precision/Recall: 98.3%/96.6% vs. 98.6%/96.7%

◼ Analysis Time: 2.5 m vs. 4.3 m (without efficient emulation)

Integration to Other Markets

⚫Expected to be a easy process

⚫Implementation: mature analysis tool chain + machine learning

⚫Training: APKs + ground-truth data

⚫Possible for large markets to distribute pre-trained models

Robustness of APICHECKER

⚫Our key API set: 426 APIs, 0.85% of the 50K APIs in SDK

⚫4,816 APIs depend on the key APIs, a total of 5,242 (10.5%) APIs

⚫Reimplementing all the APIs: high technical bar

⚫Possible workaround – NDK: high usage is also an indicator

Online Evaluation & Evolution

⚫Evaluation:

◼ based on other components in T-Market’s app review process

◼ ≥4 SOTA fingerprint-based antivirus checking (all claim ≤5% FP)

◼ expert-informed API inspection

◼ user-report-driven manual examination

⚫Evolution:

◼ dataset: original dataset & newly submitted apps

◼ labels: flagged by both APICHECKER and manual inspection

