EURO/SYS’20

Experiences of Landing Machine Learning onto
Market-Scale Mobile Malware Detection

Liangyi Gong, Zhenhua Li, Feng Qian, Zifan Zhang,
Qi Alfred Chen, Zhiyun Qian, Hao Lin, Yunhao Liu

Tencent
it

Mobile Malware Detection

®Android App Markets

et
HUAWEI

A
Google Play

o P

Mobile App Markets

»
P
l'l

Mobile Users

Mobile Malware Detection
®Android App Markets

I amazol
: m ARG O Opera Mobile Store i) o
»

I I L DO
| ’ g'é gVl lﬁl
: Google ey e :—*
A f_—“‘_ﬁ?_i _________ “lend credibility”

Mobile App Markets Mobile Users

®ML-based Mobile App Review Techniques

® Fingerprint-based Antivirus Checking

® Static Code Inspection

® Dynamic Behavior Analysis

ML-based Detection at Market Scales

Widely explored in Real-world No existing report of
the past decade the effectiveness
P Y= Y=

Challenges? .
lllll

lllll
ﬂ[;]llllu__“]lﬂ[“__“]lll["__“]ﬂ

ML-based Malware ML-based Solutions
Detection at Market Scales

Large-scale Dataset: APl-centric, Dynamic

o
s | H-E
* 500K apps submitted to Tencent Market

* From !\/I-arch to [?ecember 2017 Xposed
* Containing apps’ malice labels r
L g g . ’\’ Monkey: UI

‘.\' fven’r Steam

Trigger APT to
output log

......................................

.....................................

\

\ Tencent Market I
" https://sj.qq.com/ I
______________ / API InvocationlLog One-hot Feature Vector

API Selection: Correlation

®APIs’ correlations with the
malice of apps

" Using SRC (Spearman’s rank i
correlation coefficient) to evaluate !
APIs’ correlation with apps’ malice E

® 260 APIs pose non-trivial i
correlation (| SRC|>0.2) E

0 2000 400 600 800 1000
Ranking of API

API Selection: Correlation

®APIs’ correlations with the ®Time consumption of
malice of apps tracking different API sets

" Using SRC (Spearman’s rank i
correlation coefficient) to evaluate !

. . , .o

APIs’ correlation with apps’ malice !

I

|

|

;

" Fitting a tri-modal distribution
" |ndicating a complex relationship

a - n+ by, n € [1,800);
" 260 APIs pose non-trivial t=1{ ay-n, n € [800, 1K];
correlation (| SRC|> 0.2) as - log(n) + b3, n>1K.
0.6 80
0.5
60
04 o)
- 2
% 0.3 E40
2) I— 5K APIs
0.2 | =
" 20 1K API
01 | S
<—— 800 APIs
O 1 1 1
0 200 400 600 800 1000 0O 10 20 30 40 50

Ranking of API Number of Tracked API (K)

APl Selection: Model & Accuracy

®Machine Learning Model & Detection Accuracy

Model Precision | Recall Training
Time

Naive Bayes 60.4% 59.6% 3.6 min
LR 81.2% 70.3% 10.4 min
SVM 87.9% 71.6% | ~27K min

GBDT 88.4% 74.3% 364 min
kNN 86.5% 83.7% | ~1.8Kmin
CART 87.6% 84.3% 11.6 min
ANN 90.8% 89.9% | ~1.2K min
DNN 91.5% 90.9% | ~1.9K min
Random Forest 91.6% 90.2% 29.1 min

APl Selection: Model & Accuracy

®Machine Learning Model & Detection Accuracy

Model Precision | Recall Training |
Time i Tracking top-490 correlated
Naive Bayes 60.4% | 59.6% | 3.6 min | APIs achieves the highest
LR 81.2% | 703% | 10.4min | 1 precision/recall
SVM 87.9% | 71.6% | ~27K min
GBDT 88.4% | 74.3% | 364 min 95
kNN 86.5% | 83.7% | ~1.8K min %90'
CART 87.6% | 84.3% | 11.6min %Zz
ANN 90.8% | 89.9% | ~L2Kmin | 27
DNN 91.5% | 90.9% | ~1.9Kmin | =70 o]
Random Forest | 91.6% | 90.2% | 29.1 min 0 200 400 600 800 1K 10K 50K
Number of Tracked API

Key API| Selection Strategy

@ Step 1. Selecting APIs with the highest correlation with malware (Set-C).
® Step 2. Selecting APIs that relate to restrictive permissions (Set-P).
® Step 3. Selecting APIs that perform sensitive operations (Set-S).

@® Step 4. Combining the above.

Key AP| Selection Strategy

@ Step 1. Selecting APIs with the highest correlation with malware (Set-C).
® Step 2. Selecting APIs that relate to restrictive permissions (Set-P).
® Step 3. Selecting APIs that perform sensitive operations (Set-S).

@® Step 4. Combining the above.

! Performance:

' ® Analysis time: 4.3 minutes

' ®Precision/Recall: 96.8% / 93.7%
| ®Training time: 14.4 seconds

(7

100

Further Enriching the Feature Space

®Hidden features — APl invocation hidden by certain techniques

leveraging other apps/services to |

perform sensitive actions |

/

| Hidden and internal APIs
|

| like Java reflection

(

I | IPC through intents I
triggered by special techniques | |
' \

[Checking Permissions] [Checking Used Intents]

Further Enriching the Feature Space

®Hidden features — APl invocation hidden by certain techniques

leveraging other apps/services to |

|
triggered by special techniques |
| perform sensitive actions |

/

| Hidden and internal APIs
|

| like Java reflection

/
| IPC through intents I
|
|

-—e e e o Ee e o Em Em = w’ S e — w’
[Checking Permissions] [Checking Used Intents]
[f——————_—_—_—__—— | e e e e = —— =

I Key APIs alone : APl + Permission + Intents !

|

| ' =5 :
| ® Precision: 96.8% : ,JJ : ® Precision: 98.6% :
| ®Recall: 93.7% | | @ Recall: 96.7%

___________ J b e e e e e e e e e e e -

System: Emulation Optimization

I
| ®@Default Google Android Emulator: full-system emulation
I

| ®Result: 30% of apps require 25-minute analysis time
' ®Solution: lightweight emulation on powerful x86 server
' ®Architect: native x86 Android + Dynamic Binary Translation

| $® Generate Ul Events Monkey Exerciser

| @Pynamic Binary ' 4P/ Invocations; |
I(D Translation x86 @ APP ® |’: . ::
APP ! > Binary —» Metadata | | \ Permissions; —
| | : Used Intents :
1
| |

{ @ Invoke APIs > K ® Invoke APIs
i .
Emulation

| Infrastructure Xposed Hooking Tool

Tracked Features Random Forest

System: Emulation Optimization

: ® Configuration: 5x4-core x86 server with CPU pinning
I

| ® Compatibility: £1% incompatible apps
' ®Roll back to the Google Emulator for incompatible apps

' ®Performance: saving around 70% of the detection time

—
— - =

4 Max = 15.3 (min)
Mean = 4.3 (min)
Median = 3.5 (min)
Min = 1.1 (min)

0.8

0.6

Able to analyze an app

I
|
I Max = 15.2 (min)
«—L__Mean=1.3 (min) - in around 1.3 minutes

/ Median = 1.4 (min)
/ Min = 0.2 (min)

CDF

0.4r

0.2

/ — Lightweight Android emulator
— -Google Android emulator
0 1 1 1
0 5 10 15 20

Emulation Time (minute)

System: Real-world Deployment

®Integration to Tencent Market

I Running since March 2018

: Checking ~10K apps per day using a
I single commodity server

: " QOver 98%/96% online precision/recall :

©
~l

100
X
S~— 99 B - N
(=U - T T ==~ - - N -
O ~N - -
o —
oC 08 — -Precision||
E — Recall
9
0
O
o
e
s

96 —
3 4 5 6 7 8 9 101112 1 2
Month

System: Real-world Deployment

®Integration to Tencent Market ®System Evolution

" Monthly updating the key APls 1
with the original dataset and :
newly submitted apps I

" Fluctuating between 425 and 432 :

Running since March 2018
Checking ~10K apps per day using a
single commodity server

(Co]

~
N
N
(@)

______________________ L e e e e e e e e

100 440

S

= N9 - __ PR N 435

8 ‘sf’

[0} —

oC 08 — -Precision||

E — Recall

9

N

O

o

o

Number of Key APIs
SN
w
o

ol
3 456 78 91011121 2 3 456 7 8 91011121 2
Month Month

420

System: Addressing FPs & FNs

®False Positives

1™ 2% FP apps as complained by I
: developers :
| ® All using a few top-ranking APls |
: ® Most are quickly vetted based :
I on previous versions |

Manual Inspection:
acceptable workload

Active & complete

avoidance of FPs

System: Addressing FPs & FNs

®False Positives ®False Negatives

1™ 2% FP apps as complained by | 1'® 4% FN apps reported by end users :
: developers : : Hard to avoid :
1 ™ All using a few top-ranking APls 1™ Most (87%) barely use key APIs :
: " Most are quickly vetted based : : They have fairly simple I
I | | I

on previous versions functionalities, posing little threat

4 4

Manual Inspection: Report-driven:
acceptable workload mild impact on users

Active & complete
avoidance of FPs

Passive mitigation of FNs

Revealed Important Features

® Attempting to acquire privacy-sensitive information of user devices
®Tracking or intercepting system-level events

®Enabling certain types of attacks such as overlay-based attacks

Gini Importance
0.02 0.04 0.06 0.08

o
o
=

API: SmsManager_sendTextMessage
Permission: SEND_SMS

Intent: SMS_RECEIVED

Intent: wifi. STATE_CHANGE

Permission: RECEIVE_SMS

Intent: DEVICE_ADMIN_ENABLED
Intent: buluetooth.STATE_CHANGED
Permission: RECEIVE_MMS

Intent: ACTION_BATTERY_OKAY

API: TelephonyManager_getLinelNumber
Permission: RECEIVE_WAP_PUSH

API: Wifilnfo_getMacAddress

Permission: READ_SMS

API: View_setBackgroundColor
Permission: ACCESS_NETWORK_STATE
Permission: SYSTEM_ALERT_WINDOW
API: SQLiteDatabase_insertWithOnConflict
Permission: RECEIVE_BOOT_COMPLETED
API: HttpURLConnection_connect

API: ActivityManager_getRunningTasks

“I“"I“I“N“E

Experiences of APICHECKER

Feature Selection

Principled,
data-driven

Feature Engineering

\
Malicious “‘
Analysis Speed Model Evolution
i Efficient app o K/I_C)F\t_hl_y_) 1:
1 emulation on update with 1
, powerful x86 novel apps & i
' servers SDK APIs |

Actlve & complete avoidance of FPs
vs. Passive mitigation of FNs

Conclusion & Dataset

® We conduct a large-scale study to understand and
overcome real-world challenges of developing ML-
based malware detection solutions at market scales.

® \We showcase several key design decisions we make
towards implementing, deploying, and operating a
production market-scale mobile malware detection
system — APICHECKER.

® Our system has been operational at Tencent Market
since March 2018, vetting around 10K apps per day
on a single commodity server.

Dataset & tool release: https://apichecker.github.io/

https://apichecker.github.io/

Countering Emulator Detection

B changing the default configurations of emulators
B tuning the execution parameters of Monkey
B replaying traces of sensor data collected from real devices
B obfuscating the existence of Xposed
®Experiment on real devices, original and enhanced emulator:

B original emulator: 86.6% apps invoke the same amount of APIs

Comparison with Other Work

B the scale of studied apps is much larger

B innovations in APl selection, identifying hidden features
B optimization in dynamic emulation infrastructure
B commercial deployment result & online model evolution

APSI tf::ig;on Related Work Analysis Method An:?;‘sji:;me #I?s z;s : tl?giléfl Precision, Recall
Statistical Sharma et al. [35] static -- 35 1,600 91.2%, 97.5%
Correlations | Droid APIMiner [1] static 25 sec 169 ~20K --
Restrictive Stowaway [135] static - - 1,259 064 --
Permissions DroidMat [43] static -- -- 1,738 96.7%, 87.4%
Yang et al. [46] dynamic 1080 sec 19 ~27K 92.8%, 84.9%
RiskRanker [20] static 41 sec - - ~118K - -
Sensitive DroidCat [9] semi-dynamic 354 sec 27 ~34K 97.5%, 97.3%
Operations IntelliDroid [42] static + dynamic 138.4 sec 228 2,326 - -
Droid-Sec [49] static + dynamic -- 64 250 --
DroidDolphin [44] dynamic 1020 sec 25 64K 90%, 82%
Hybrid DREBIN |[6] static 10 sec -- ~128K --
APICHECKER dynamic 78 sec 426 ~500K | 98.6%, 96.7 %

Ul Exploration & Coverage

|
|
| actually referred in source code

| ®Tradeoff: 5K vs. 100K Monkey Events, sacrificing a small fraction
I
1 (9.5%) of RAC to largely reduce (94%) of the emulation time

100 - . , : 10 —

I
|
I
|
| ®@New metric: Referred Activity Coverage (RAC) :
I
I
|

— -Emulation Time]|
—RAC

\
A
S
Average Emulation Time (min

: : : : 0
0 3 6 9 12 15
Number of Monkey Events (K)

A Smaller APl set?

I

| ®API selection can affect both the detection accuracy and speed
I

! ® Most of key APlIs slightly affect accuracy, greatly impacts speed
' @Tracking top-150 vs. Tracking top-426:

B Precision/Recall: 98.3%/96.6% vs. 98.6%/96.7%
B Analysis Time: 2.5 m vs. 4.3 m (without efficient emulation)

FFFFF

©
o)
\

o

P 08 i
/
(] II 3
< 0.6 i
8 ______ / L 0.6
’ - 2
L 0.4 2 0.4}

—— F1 Score

- = Emulation Time

200 300 400
APl Ranking in Gini Importance

—

o

Average Emulation Time (min)

o
no

o

Track No API

—Track 150 APIs| |

- =Track 426 APls

10

15

Emulation Time (minute)

Integration to Other Markets

| ®Expected to be a easy process

' ®mplementation: mature analysis tool chain + machine learning
' ®Training: APKs + ground-truth data

' ®@Possible for large markets to distribute pre-trained models

Robustness of APICHECKER

l ®QOur key APl set: 426 APIs, 0.85% of the 50K APIs in SDK

: ®4,816 APIs depend on the key APIs, a total of 5,242 (10.5%) APIs
' ®Reimplementing all the APIs: high technical bar

' ®Possible workaround — NDK: high usage is also an indicator

Online Evaluation & Evolution

B based on other components in T-Market’s app review process
B >4 SOTA fingerprint-based antivirus checking (all claim <5% FP)
B expert-informed APl inspection
B user-report-driven manual examination

®Evolution:
B dataset: original dataset & newly submitted apps

B [abels: flagged by both APICHECKER and manual inspection

